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Fluid flow vorticity is an important dynamic variable, and many physical phenomena
can be described in terms of vorticity more readily than in terms of primitive variables.
Vorticity plays a fundamental role in understanding the physics of laminar, transitional
and turbulent flows, in mathematical analysis of fluid equations, and in computational
fluid dynamics in general.

The advantages of using the vorticity equation for numerical simulations include the
following: it allows access to the physically relevant variables of vortex dominated flows,
boundary conditions can be easier to implement in external flows, and it provides a unified
framework for treating flows in inertial and non-inertial frames of reference. Recently, it
was also shown that vorticity equation may be efficiently exploited to model subgrid scales
dynamics in a variational multiscale approach [1] and that vorticity computed from the
adjoint equation rather than a curl of a Galerkin velocity approximation is a suitable
variable for correct helicity and vorticity balances [2, 3]. Hence, for the expense of solving
for velocity and vorticity in a coupled fashion one may benefit from computing numerical
solutions that are more physically relevant and consistent to the geometry of the Navier-
Stokes equations.

In this presentation, we shall discuss Galerkin methods based on the vorticity equation

∂w

∂t
− ν∆w + (u · ∇)w − (w · ∇)u = ∇× f , (1)
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coupled with the momentum equation through the Lamb vector
∂u

∂t
− ν∆u + D(u)u +

1

2
w × u +∇p = f

divu = 0,
(2)

with D(u) = 1
2
(∇u + [∇u]T ). We shall consider a new vorticity boundary condition

for solid walls and discuss conservation properties of a finite element method based on
(1)-(2). Numerical examples will be given to illustrate the accuracy gained by solving
the coupled system comparing to more traditional methods in pressure-velocity variables.
Following [4, 5], we shall show that velocity and vorticity equations in (1)-(2) can be
efficiently decoupled on every time step of numerical integration, leading to stable and
fast time-stepping method.

Another way of explicit inclusion of the Lamb vector in the momentum equation is based
on the identity:

(u · ∇)u +∇p = w × u +∇P,

where P = 1
2
u · u + p is the Bernoulli pressure. Likewise, the vorticity equation can be

reformulated using
(u · ∇)w − (w · ∇)u = 2D(w)u−∇η,

with the helical density η := u ·w. The latter formulation enables one to solve directly
for helical density and to enforce the divergence-free of vorticity in a numerical method
explicitly [4]. We shall show results for these alternative formulations as well.
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